Joint semantics and feature based image retrieval using relevance feedback

نویسندگان

  • Ye Lu
  • HongJiang Zhang
  • Wenyin Liu
  • Chunhui Hu
چکیده

Relevance feedback is a powerful technique for image retrieval and has been an active research direction for the past few years. Various ad hoc parameter estimation techniques have been proposed for relevance feedback. In addition, methods that perform optimization on multilevel image content model have been formulated. However, these methods only perform relevance feedback on low-level image features and fail to address the images’ semantic content. In this paper, we propose a relevance feedback framework to take advantage of the semantic contents of images in addition to low-level features. By forming a semantic network on top of the keyword association on the images, we are able to accurately deduce and utilize the images’ semantic contents for retrieval purposes. We also propose a ranking measure that is suitable for our framework. The accuracy and effectiveness of our method is demonstrated with experimental results on real-world image collections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

On-line Content-Based Image Retrieval System using Joint Querying and Relevance Feedback Scheme

In a high-level semantic retrieval process, we utilize the search engine to retrieve a large number of images using a given text-based query. In a low-level image retrieval process, the system provides a similar image search function for the user to update the input query for image similarity characterization. This paper presents an On-line Content-Based Image Retrieval System using joint query...

متن کامل

روشی برای بازخورد ربط براساس بهبود تابع شباهت در بازیابی تصویر بر اساس محتوا

In content based image retrieval systems, the suitable visual features are extracted from images and stored in the feature database Then the feature database are searched to find the most similar images to the query image. In this paper, three types of visual features by 270 components were used for image indexing. Here, we use a weighted distance for similarity measurement between two images....

متن کامل

Content based Image Processing using Relevance Feedback with Null Space LDA (NLDA)

The biggest problem in the research of Content Based Image Retrieval (CBIR) is bridge the gap between low-level features and high-level semantics. , Still many shortcomings for image retrieval system only with the low level visual features due to the semantic space. It is better for the relevance feedback based on the user involvement in image retrieval system. By using the help of user's ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Multimedia

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2003